
RESEARCH ARTICLE

Exposure to a firefighting overhaul

environment without respiratory protection

increases immune dysregulation and lung

disease risk

Stephen J. Gainey1, Gavin P. Horn2, Albert E. Towers3, Maci L. Oelschlager4, Vincent

L. Tir4, Jenny Drnevich5, Kenneth W. Fent6, Stephen Kerber7, Denise L. Smith2,8, Gregory

G. Freund1,3,4*

1 Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America, 2 Illinois

Fire Service Institute, Champaign, Illinois, United States of America, 3 Division of Nutritional Sciences,

University of Illinois, Urbana, Illinois, United States of America, 4 Department of Pathology, Program in

Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana, Illinois, United States

of America, 5 Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, United States of

America, 6 Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for

Occupational Safety and Health, Cincinnati, Ohio, United States of America, 7 Director, UL Firefighter Safety

Research Institute, Columbia, Maryland, United States of America, 8 Department of Health and Human

Physiological Sciences, Skidmore College, Saratoga Spring, New York, United States of America

* freun@illinois.edu

Abstract

Firefighting activities appear to increase the risk of acute and chronic lung disease, including

malignancy. While self-contained breathing apparatuses (SCBA) mitigate exposures to

inhalable asphyxiates and carcinogens, firefighters frequently remove SCBA during over-

haul when the firegrounds appear clear of visible smoke. Using a mouse model of overhaul

without airway protection, the impact of fireground environment exposure on lung gene

expression was assessed to identify transcripts potentially critical to firefighter-related

chronic pulmonary illnesses. Lung tissue was collected 2 hrs post-overhaul and evaluated

via whole genome transcriptomics by RNA-seq. Although gas metering showed that the fire-

ground overhaul levels of carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanine

(HCN), hydrogen sulfide (H2S) and oxygen (O2) were within NIOSH ceiling recommenda-

tions, 3852 lung genes were differentially expressed when mice exposed to overhaul were

compared to mice on the fireground but outside the overhaul environment. Importantly,

overhaul exposure was associated with an up/down-regulation of 86 genes with a fold

change of 1.5 or greater (p<0.5) including the immunomodulatory-linked genes S100a8 and

Tnfsf9 (downregulation) and the cancer-linked genes, Capn11 and Rorc (upregulation).

Taken together these findings indicate that, without respiratory protection, exposure to the

fireground overhaul environment is associated with transcriptional changes impacting pro-

teins potentially related to inflammation-associated lung disease and cancer.

PLOS ONE | https://doi.org/10.1371/journal.pone.0201830 August 21, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gainey SJ, Horn GP, Towers AE,

Oelschlager ML, Tir VL, Drnevich J, et al. (2018)

Exposure to a firefighting overhaul environment

without respiratory protection increases immune

dysregulation and lung disease risk. PLoS ONE

13(8): e0201830. https://doi.org/10.1371/journal.

pone.0201830

Editor: Amarjit Mishra, Auburn University College

of Veterinary Medicine, UNITED STATES

Received: May 8, 2018

Accepted: July 23, 2018

Published: August 21, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

file.

Funding: This work was supported by the

Department of Homeland Security Fire Prevention

and Safety Grant #EMW-2013-FP-00766 to G.H.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

https://doi.org/10.1371/journal.pone.0201830
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201830&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201830&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201830&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201830&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201830&domain=pdf&date_stamp=2018-08-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201830&domain=pdf&date_stamp=2018-08-21
https://doi.org/10.1371/journal.pone.0201830
https://doi.org/10.1371/journal.pone.0201830
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Introduction

Even as personal protective equipment (PPE) improves [1], the incidence and mortality from

cancer in firefighters increases and is a leading cause of death [2]. Epidemiological evidence

shows that firefighters have a greater risk of cancer when compared to the general population

[2,3]. Firefighters in the United States respond to 1.2–1.4 million fires each year including

approximately 475,000–500,000 structure fires [4]. Exposure to toxicants is possible during

live fire responses, which can result in biological absorption of polycyclic aromatic hydrocar-

bons (PAHs) and benzene [5–7] and inhalation of carbon monoxide [8] and hydrogen cyanide

[9]. Interestingly, in 2010, the International Agency for Research on Cancer (IARC) classified

occupational exposure during firefighting as possibly carcinogenic to humans [10]. Part of the

rational for this classification results from the lack of genotoxicity studies in animals that

involves exposure to smoke from the combustion of structural materials. Even with substantial

upgrades to PPE, such as SCBAs and turnout gear technology, firefighters are imperiled if

SCBAs are compromised, not worn or removed [5,11–13]. While exposure risk is minimized

with PPE [14,15], PPE usage is not universal for all phases of a response.

Currently, the highest risk of toxicant exposure appears to be during overhaul, since initial

fire suppression is usually associated with heavy smoke and the obvious need for SCBA [16].

During overhaul, time spent searching for unextinguished fire inside structures can exceed 30

minutes and is most often coupled to improper or little use of respiratory protection [11,16].

Unfortunately, failure to use PPE during overhaul can result in contact with concealed carcin-

ogens (like asbestos) due to fire- or firefighting-dependent structural damage [16]. In addition,

smoke and/or fume inhalation is most prevalent during this period due to frequent abandon-

ment of SCBA [17,18]. While the U.S. Fire Service has gained traction in limiting removal of

SCBA, firefighters still make their own determination on when to utilize it based on heat stress,

comfort or visual indications of clear air. Therefore, the purpose of this study was to examine

the impact of unprotected respiratory exposure to the fireground during overhaul on mouse

lung gene expression. It should provide insight to potential pathways linked to lung cancer

development.

Materials and methods

Animals

The use of animals (S1 Checklist) was in accordance with the recommendation in the Guide

for the Care and Use of Laboratory Animals of the National Institutes of Health and an Institu-

tional Animal Care and Use Committee (IACUC) approved protocol (Protocol #15099) at the

University of Illinois. C57BL/6J male mice (10 weeks old) were purchased from Jackson Labo-

ratories (Bar Harbor, ME). Mice were group-housed (4 per cage) in shoebox cages (length 29.9

cm; width 18.4 cm; height 12.5 cm) and allowed free access to food and water, unless otherwise

noted. Housing temperature (22 ˚C) and humidity (45–55%) were controlled as was a 12/12 h

reversed dark-light cycle (light = 1000–2200 h). Animals were euthanized for tissue collection

using CO2. Total number of mice used was 54.

Live-fire scenario setup

Firefighting activities were conducted in a purpose-built live-fire research test structure. The

structure, based on a design by a residential architectural company, was representative of a

home constructed in the mid-twentieth century with walls and doorways separating all rooms

and 2.4m ceilings. The structure had an approximate floor area of 111 m2 with 8 total rooms.

Interior finish in the burn rooms was protected by gypsum board on the ceiling and walls.
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Furnishings were acquired from a lone source to afford inter-scenario standardization. The

bedrooms, where the fires were ignited, were appointed with a double bed (covered with a

foam mattress topper, comforter and pillow), stuffed chair, side table, lamp, dresser and flat

screen television. Floors were covered with polyurethane foam padding and polyester carpet.

Fires were ignited using the stuffed bedroom chair via remote ignition comprised of a match

book electrically energized by fine wire heating. Each resultant flaming fire could grow until it

approached early ventilation-limitation. Based on national averages, fire department dispatch

was between 4–5 min after ignition for all scenarios. The structure was repaired/rebuilt after

each scenario.

Firefighting and overhaul

A team of 12 firefighters battled the fires involving two fully involved bedrooms. As soon as

the fire was suppressed, and interior operations were completed (two simulated trapped occu-

pants removed), mice were transported into the burned structure as overhaul operations by

firefighters were initiated.

Mouse groups/transport/housing

For each cohort (n = 18 mice/cohort), mice were placed into three groups (n = 6 each): 1) con-

trol (C) group, which never left the animal housing facility; 2) fireground (FG) group, which

was taken to the fireground but placed in a portion of the structure that was uninvolved with

the fire and overhaul activities: and 3) overhaul (OH) group, which was taken to the fireground

and placed in the interior of the structure during overhaul (as described above). Three cohorts

of mice were used, one for each of the three experiments performed on three separate days at

approximately the same time of day (0800–0900). The FG and OH mouse groups were trans-

ported to the fireground, arriving 30 min prior to firefighting and were placed on a table

approximately 25 m from the structure while active fire was being fought by the firefighters.

Mice were housed in shoebox cages wrapped in heat-resistant AB Technology Group Knitted

Fiberglass Plain Tape (Ogdensburg, NY) and 3M Silver Foil Tape 3340 (Maplewood, Minne-

sota), on 3.5 sides. Interior cage temperature was recorded using a Fisher Scientific (Hampton,

NH) digital probe thermometer, and animals were visually monitored every 5 min throughout

the exposure period for signs of pain or distress. Mouse groups were returned to the animal

care facility 15 minutes after the conclusion of overhaul.

Atmospheric data collection

Air concentrations of carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanide

(HCN), hydrogen sulfide (H2S), and oxygen (O2) gases were quantified with a MX6 iBrid

(Industrial Scientific; Pittsburg, PA) portable personal gas monitor. The meter was placed on

top of the mouse cages in one of the fire rooms being overhauled by firefighters.

RNA extraction and fragment analysis

Mouse lungs were harvested 2 hrs after the OH group was removed from the overhaul envi-

ronment and immediately placed in Qiagen RNAlater (Valencia, CA). RNA was extracted

using the Qiagen miRNeasy Mini Kit including DNAase. RNA integrity was determined using

an Applied Biosystems Fragment analyzer (Foster City, CA); all 54 samples had RQN score>7

and were defined as acceptable.
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Illumina RNA sequencing

RNAseq libraries were prepared with Illumina TruSeq Stranded RNA Sample Prep Kit (San

Diego, CA) resulting in 5’ to 3’ strand-specific libraries. A single library was prepared from

each sample. All libraries were then quantitated by qPCR and sequenced on seven lanes for

101 cycles using an Illumina HiSeq2500 100nt single-end read with the TruSeq SBS sequencing

v3 kit. Fastq files were processed and demultiplexed with bcltofastq 1.8.4.

RNAseq data and statistical analysis

Raw reads were checked for quality using FASTQC (v 0.11.2) then trimmed and filtered using

Trimmomatic (v 0.33) to remove residual adapter content and low-quality bases (Phred quality

score< 28). Trimmed/filtered reads were aligned to NCBI’s Mus musculus GRCm38.p3 genome

and gene model annotation release 105 using STAR (v 2.4.2a). Post-alignment gene counts were

then determined using featureCounts (v 1.4.3-pl) with multi-mapping reads excluded.

The gene-level read counts were then imported into R (v. 3.4.3) for statistical analyses.

TMM normalization (Robinson and Oshlack 2010) in the edgeR package (Robinson et al.

2010; v 3.20.6) was used to normalize the counts to log2-transformed counts per million

(logCPM), using the cpm function with prior count = 3. 25,525 genes without logCPM > log2

(1) in at least 5 samples were filtered out, leaving 16,261 genes to be analyzed for differential

expression. TMM-values were re-calculated as well as logCPM normalized values with prior.

count = 3 to use in down-stream analyses and visualizations.

Clustering of samples to check for outliers and batch effects was done using Principle Com-

ponents Analysis [19]. We then performed surrogate variables analysis (sva) [20,21] using the

sva package (v 3.26.0) [22],) to detect and remove artifacts like batch effects by creating eight sur-

rogate variables (sv). The sv were added to the statistical model for the 3 treatment groups and

differential expression testing [23] using the limma package’s (v 3.34.5) [24] “trend” approach

because the variation in library sizes was less than the recommended 3-fold maximum [25]. A

one-way ANOVA across the 3 groups was calculated, along with all three pairwise comparisons.

Multiple hypothesis testing adjustment was done separately for each test using the False Discov-

ery Rate (FDR) method [26]. While the sva method was judged to be the best way to correct the

overall FG vs OH comparison for individual fire and other partially confounded batch effects, it

does not allow us to pull individual FG vs OH comparisons for each fire. Therefore, we also

made a separate statistical analysis for the 9-different treatments X fire groups + seven estimated

surrogate variables and pulled out pairwise FG vs OH comparisons within each fire. Because we

were mainly interested in comparing the numbers of genes differentially expressed between

fires, we performed a global FDR correction across the three comparisons to ensure that a gene

with the same raw p-value in different fires ended up with the same FDR p-value.

Functional annotation was taken from Bioconductor’s [27] org.Mm.eg.db package (v 3.5.0)

using the respective Entrez Gene ID from NCBI. KEGG pathways were downloaded directly

from http://www.kegg.jp/ using the KEGGREST package (v 1.18.0). Over-representation test-

ing was done on KEGG pathways for specified gene sets using the GOstats (v 2.44.0) [28] and

Category (v 2.44.0) packages. Statistical significance was assumed at FDR p< 0.05 unless oth-

erwise noted.

Results

Overhaul environmental conditions

Table 1 shows that mouse cage temperature averaged 31.6 ˚C with differences between test

fires ranging from 28.3–33.9 ˚C. Peak temperatures ranged from approximately 30.6–40.6 ˚C
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and occurred as the mice cages were introduced into the structure. Peak concentrations for

CO2, HCN, H2S, and minimum level of O2 did not exceed the 10-hour NIOSH TWA levels.

Peak CO did exceed NIOSH STEL and OSHA PEL TWA levels and remained under the

NIOSH ceiling recommendation. Qualitatively, the overhaul environment appeared visually

clear during each overhaul in contrast to dense smoke during the fire itself (data not shown).

Principal component analysis (PCA) demonstrate distinct separations

between C, FG and OH groups

To determine the transcriptomic relationship between exposure/control groups, high-

throughput sequencing was used to delineate global gene expression. Table 2 indicates the

Table 1. Environmental measurements for OH group mice during overhaul respective of mouse cohort/fire.

Fire 1 Fire 2 Fire 3

Exposure Time (min) 18 15 15

Temperature (˚C) Average 33.9 28.3 32.8

Peak 40.6 30.6 40.0

CO (ppm) Average 26 28 37

Peak 70 98 91

CO2 (%) Average 0.02 0.02 0.01

Peak 0.08 0.05 0.05

HCN (ppm) Average 0.1 0.6 0.4

Peak 1.1 2.8 1.7

H2S (ppm) Average 0.0 0.1 0.5

Peak 2.2 1.0 2.7

O2 (%) Average 20.8 20.9 20.8

Minimum 20.6 20.8 20.5

CO—NIOSH TWA 35ppm; OSHA TWA 50ppm; NIOSH C 200 ppm; IDLH 1200ppm

CO2—NIOSH TWA 0.5%; OSHA TWA 0.5%; NIOSH ST 3%; IDLH 4%

HCN—NIOSH ST 4.7 ppm OHSA TWA 10 ppm, IDLH 50 ppm

H2S—NIOSH C 10 ppm, OSHA C 20 ppm; IDLH 100 ppm

O2—typically alarm levels are set at <19.5%

https://doi.org/10.1371/journal.pone.0201830.t001

Table 2. Number of different gene entities in NCBI Mus musculus GRCm38.p3 gene annotations.

Entity Type Number in Genome Number After Filtering

mRNA 21,198 13,743

ncRNA 12,285 1,342

Exon 4,008 144

Misc_RNA 1,988 940

Precursor_RNA 1,187 17

V_segment 535 49

tRNA 413 9

J_segment 94 1

rRNA 35 2

D_segment 23 0

C_region 20 13

Total 41,786 16,261

https://doi.org/10.1371/journal.pone.0201830.t002
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number and types of 41,786 gene entities in the genome and the 16,261 genes remaining after

filtering. Principle Components Analysis clustering after removing the effects of the eight sur-

rogate variables (Fig 1) shows significant separation between all three groups (C, FG, and OH)

based on the distance between clusters plotted on PC1 and PC2.

Gene expression in lung after overhaul exposures is markedly different

from fireground exposures

Table 3 shows the number of significant differentially expressed genes overall and broken

down by each of the three fires. Overall, mice exposed to the overhaul environment resulted in

a dramatically differential gene expression than mice kept at the fireground, modulating 3,852

genes. However, it is also apparent there was significant fire-to-fire variation in the gene

expression, ranging from 3,460 on Fire 1 to 698 on Fire 3, although the majority of signifi-

cantly changed genes on Fire 1 were trending the same direction on Fires 2 and 3, leading to

overall FG vs. OH significance.

Fig 1. Principal component analysis of control, fireground, and overhaul gene expression data following surrogate variables

removal. Principal components 1 and 2 are shown with control samples are represented by circles (red color). The fireground

samples are represented by squares (lime color) and the overhaul samples represented as diamonds (blue color). The numeric labels

1, 2, and 3 indicate the cohort.

https://doi.org/10.1371/journal.pone.0201830.g001
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Table 4 highlights these differentially expressed genes that display a greater than ± 50%-fold

change (FC). This list consists of 43 up-regulated and 43 down-regulated genes. Importantly,

the top 5 up-regulated genes link to cancer or immunomodulation, including calpain 11

(Capn11), immunoglobulin kappa chain variable 5–43 (Igkv5-43), immunoglobulin heavy

constant alpha (Igha), immunoglobulin heavy variable 1–26 (Ighv1-26), and immunoglobulin

heavy constant gamma 2B (Ighg2b) [29–33]. In correlate, several down-regulated genes are

important to immune and cancer defense, specifically tumor necrosis factor (ligand) super-

family member 9 (Tnfsf9), tumor necrosis factor receptor superfamily member 13c

(Tnfrsf13c), and S100 calcium binding protein A8 (S100a8) [34–36].

Heatmap display shows global gene expression differences in lung tissue

exposed to the overhaul environment

The 3,852 significantly expressed genes in the group exposed to the overhaul environment vs

fireground (Table 3) were visualized in a heatmap to see the expression patterns across all

three groups. Two main heatmap patterns were apparent based on differences in exposure (Fig

2). Pattern 1 shows marked similarities in the C and FG groups when compared to the OH

group for the genes located in the purple and black bars (n genes = 1,122 and 1,017, respec-

tively). Pattern 2 shows marked similarities in the C and OH groups compared to the FG

group for genes located in the yellow and green bars (n genes = 839 and 874, respectively).

Finally, KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis (Fig 3) of the black, pur-

ple, and both (black and purple combined) gene clusters from Fig 2 shows 22 significantly

over-represented cellular pathways [37]. The black cluster contained 68% (15/22) of the over-

represented pathways while the purple cluster contained 23% (5/22) with 9% (2/22) overlap-

ping between both clusters.

Discussion

Fire suppression is associated with high rates of duty-related sudden cardiac death [38,39]. In

addition, firefighters are at increased risk for developing lung disease [40,41]and cancer

[2,3,42]. While the etiologies of lung disease and cancer are thought to be linked to toxicant

exposure during fire suppression and overhaul activities [16,43], mechanistically little is

known about why firefighters show these increased incidences or what aspects of firefighting

exacerbates disease risks. Using a mouse model of exposure sans airway protection, the impact

of environmental exposure during overhaul on lung gene expression was assessed to better

define pathways that are potentially critical to firefighter-related chronic illnesses. Our major

finding is that working in an overhaul environment without breathing protection is associated

with changes in transcripts with links to respiratory diseases including asthma, COPD and

Table 3. Number of genes significantly up- or down- regulated (FDR p-value< 0.05) by overhaul (OH) exposure

compared with fireground (FG).

Treatment Up Down Total

FG vs OH 1,890 1,962 3,852

FG.1 vs OH.1 1,651 1,809 3,460

FG.2 vs OH.2 557 687 1,244

FG.3 vs OH.3 356 342 698

Direction of significantly expressed genes refers to expression level in OH compared to FG as the baseline.

https://doi.org/10.1371/journal.pone.0201830.t003
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Table 4. List of significant differentially expressed genes for FG vs OH.

Gene Symbol Entrez ID Gene Name Fold Change

Igha 238447 immunoglobulin heavy constant alpha 4.24

Igkv5-43 381783 immunoglobulin kappa chain variable 5–43 2.89

Ighv1-26 629884 immunoglobulin heavy variable 1–26 2.68

Capn11 268958 calpain 11 2.54

Ighg2b 16016 immunoglobulin heavy constant gamma 2B 2.53

Rorc 19885 RAR-related orphan receptor gamma 2.48

Gzmk 14945 granzyme K 2.34

Igj 16069 immunoglobulin joining chain 2.32

Ighg1 16017 immunoglobulin heavy constant gamma 1 (G1m marker) 2.09

Dnase2b 56629 deoxyribonuclease II beta 2.08

Rasd1 19416 RAS, dexamethasone-induced 1 1.99

Akr1c14 105387 aldo-keto reductase family 1, member C14 1.93

Igkv1-135 243420 immunoglobulin kappa variable 1–135 1.85

Cry1 12952 cryptochrome 1 (photolyase-like) 1.83

Gpr137c 70713 G protein-coupled receptor 137C 1.82

Igkv2-109 628268 immunoglobulin kappa variable 2–109 1.75

Gm11827 100503518 predicted gene 11827 1.75

Ighv3-6 780829 immunoglobulin heavy variable 3–6 1.75

Ctla4 12477 cytotoxic T-lymphocyte-associated protein 4 1.73

Doc2b 13447 double C2, beta 1.73

Ddit4 74747 DNA-damage-inducible transcript 4 1.73

Ces1g 12623 carboxylesterase 1G 1.72

Nav3 260315 neuron navigator 3 1.71

Ighg2c 404711 immunoglobulin heavy constant gamma 2C 1.69

Rasl10b 276952 RAS-like, family 10, member B 1.68

Ryr3 20192 ryanodine receptor 3 1.67

Gkn3 68888 gastrokine 3 1.66

Lonrf3 74365 LON peptidase N-terminal domain and ring finger 3 1.64

Csrnp1 215418 cysteine-serine-rich nuclear protein 1 1.63

Gzmb 14939 granzyme B 1.62

Tmem252 226040 transmembrane protein 252 1.61

Serpini1 20713 serine (or cysteine) peptidase inhibitor, clade I, member 1 1.59

Ighv9-3 780825 immunoglobulin heavy variable V9-3 1.58

Scn2b 72821 sodium channel, voltage-gated, type II, beta 1.58

Sox8 20681 SRY (sex determining region Y)-box 8 1.57

Gadd45g 23882 growth arrest and DNA-damage-inducible 45 gamma 1.56

BB123696 105404 expressed sequence BB123696 1.55

Adm 11535 adrenomedullin 1.54

Gal3st3 545276 galactose-3-O-sulfotransferase 3 1.53

Ajap1 230959 adherens junction associated protein 1 1.52

Abhd12b 100504285 abhydrolase domain containing 12B 1.52

Kcnip3 56461 Kv channel interacting protein 3, calsenilin 1.51

Cebpd 12609 CCAAT/enhancer binding protein (C/EBP), delta 1.50

Ly6c2 100041546 lymphocyte antigen 6 complex, locus C2 -1.51

Col5a3 53867 collagen, type V, alpha 3 -1.51

Slc22a3 20519 solute carrier family 22 (organic cation transporter), member 3 -1.51

Muc5b 74180 mucin 5, subtype B, tracheobronchial -1.52

(Continued)
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cancer. Importantly, these changes occurred in the absence of obvious increases in the poison-

ous gases HCN and H2S.

As expected, mice absent from the fireground (C group) or on the fireground but well dis-

tanced from the overhaul activities (FG group) showed greater similarity in gene expression

than mice exposed to the overhaul environment (OH group). Interestingly, the C vs. FG group

comparison showed more gene expression dissimilarity than anticipated (Fig 2). While trans-

portation stress in mice is a well-described phenomenon [44,45], the magnitude of this effect

Table 4. (Continued)

Gene Symbol Entrez ID Gene Name Fold Change

Mnd1 76915 meiotic nuclear divisions 1 -1.53

Tnfrsf13c 72049 tumor necrosis factor receptor superfamily, member 13c -1.54

Artn 11876 artemin -1.54

Ccno 218630 cyclin O -1.55

Fbp2 14120 fructose bisphosphatase 2 -1.55

Olfm2 244723 olfactomedin 2 -1.55

Sp5 64406 trans-acting transcription factor 5 -1.56

Tnc 21923 tenascin C -1.56

Loxl1 16949 lysyl oxidase-like 1 -1.56

Elovl1 54325 elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 1 -1.56

AI854703 243373 expressed sequence AI854703 -1.56

Retnla 57262 resistin like alpha -1.56

Muc20 224116 mucin 20 -1.56

Cftr 12638 cystic fibrosis transmembrane conductance regulator -1.57

Tubb4a 22153 tubulin, beta 4A class IVA -1.58

Clmp 71566 CXADR-like membrane protein -1.58

Ccna1 12427 cyclin A1 -1.58

Mfsd4 213006 major facilitator superfamily domain containing 4A -1.59

Tmem132c 208213 transmembrane protein 132C -1.59

Cpm 70574 carboxypeptidase M -1.59

Tulp1 22157 tubby like protein 1 -1.59

Ppp1r3c 53412 protein phosphatase 1, regulatory (inhibitor) subunit 3C -1.60

Tnfsf9 21950 tumor necrosis factor (ligand) superfamily, member 9 -1.61

Aoc1 76507 amine oxidase, copper-containing 1 -1.61

Ccdc42 276920 coiled-coil domain containing 42 -1.64

Nxph3 104079 neurexophilin 3 -1.64

Unc80 329178 unc-80, NALCN activator -1.65

Scn3a 20269 sodium channel, voltage-gated, type III, alpha -1.65

Klk14 317653 kallikrein related-peptidase 14 -1.66

Mcidas 622408 multiciliate differentiation and DNA synthesis associated cell cycle protein -1.66

Mmp9 17395 matrix metallopeptidase 9 -1.67

Olfr1342 258708 olfactory receptor 1342 -1.67

Camkk1 55984 calcium/calmodulin-dependent protein kinase kinase 1, alpha -1.67

Gmnc 239789 geminin coiled-coil domain containing -1.67

S100a8 20201 S100 calcium binding protein A8 (calgranulin A) -1.69

Ppp1r1b 19049 protein phosphatase 1, regulatory (inhibitor) subunit 1B -1.71

Pbld1 68371 phenazine biosynthesis-like protein domain containing 1 -1.72

Slc26a4 23985 solute carrier family 26, member 4 -1.73

Rasd2 75141 RASD family, member 2 -1.75

https://doi.org/10.1371/journal.pone.0201830.t004
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from a gene transcription perspective is not currently known, but appears to need further

study. In addition to transportation stress, the FG group was also exposed to fire apparatus

lights, fireground sounds, and, potentially, light smoke. All or anyone of these could be a

potential confound.

Fig 2. Heatmap showing changes in global gene expression. The overall expression patterns across all three treatments groups were visualized for the

3,852 genes with OH vs. FG FDR p-value< 0.05 using a heatmap. Each row represents one gene and each column is one individual mouse, grouped by

treatment. The color scale represents standard deviations from the mean expression level across all samples with greater expression represented in red

and lesser expression by blue relative to the mean.

https://doi.org/10.1371/journal.pone.0201830.g002
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Fig 3. Significant over-represented KEGG pathways amongst overhaul treated samples. Over-representation

testing completed based on purple and black gene set clusters, as well as both clusters combined, identified from

heatmap (Fig 2) using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Twenty-two pathways had more

significant genes than expected by chance in at least one of the three comparisons (raw p-value< 0.005). The color of

the box represents the –log10(p-value) to give more significant values darker color while the actual p-values are printed

inside each box; the grey box indicates no genes in the black cluster mapped to that pathway.

https://doi.org/10.1371/journal.pone.0201830.g003
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Gene listed in Table 4 are associated with immune and inflammatory pathways differen-

tially expressed in the OH vs FG group. Interestingly, 50% of these genes were downregulated.

An expected upregulation of pro-inflammatory genes, [46] downstream of NF-κB, was not

observed, which was unexpected. In fact, the two principal cytokine mediators of innate

immunity [47], namely IL-1βnot shown) and TNF were down-regulated. In contrast, a small

group of cancer-associated genes were up-regulated during overhaul including: Calpain 11

(Capn11), RAR-Related Orphan Receptor Gamma (Rorc), and Deoxyribonuclease II Beta

(Dnase2b) [29,48,49]. This pattern of gene expression accounts for the overrepresentation of

pathways linking immune dysregulation to cancer (Fig 3), and suggests that working in the

overhaul environment without airway protection, even when visibly “clear”, poses a danger to

lung health. These findings may also add insight into the increased incidence of respiratory

diseases and cancer that is reported in the fire service [50,51].

Other than CO, gases were measured at levels below the recommended limits for an 8–10

hr occupational exposure even when peak values were factored. CO, however, exceeded the

NIOSH REL TWA (10 hour), and CO peak levels were above OSHA PEL TWA (8 hour).

Since CO never approached the NIOSH ceiling value of 200 ppm and peak values were well

below the IDLH of 1200 ppm [52,53], many fire services would clear firefighters for SCBA face

piece removal in the overhaul conditions experienced by mice in this study. Additionally, for

fire departments without quantitative requirements, the qualitative observation that the area

was visibly clear of smoke would allow for unmasking.

Given that CO levels did not appear to correlate with the differential gene expression

observed, several other well-described fireground contaminants could be responsible for the

results including benzene and polycyclic aromatic hydrocarbons [54]. Unfortunately, portable

monitoring for said toxicants was not available to this study. In sum, changes in lung gene

expression appear relatively substantial in the unprotected mouse during overhaul. Further

investigation is warranted to better understand how activation of potentially deleterious

pathways in the mouse lung translate to pulmonary diseases in individuals exposed to the

fireground.
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